Often you may want to assign colors to points in a ggplot2 plot based on some categorical variable.
Fortunately this is easy to do using the following syntax:
ggplot(df, aes(x=x_variable, y=y_variable, color=color_variable)) +
geom_point()
This tutorial provides several examples of how to use this syntax in practice using the built-in R dataset titled iris:
#view first six rows of iris dataset
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
Example 1: Use Default Colors
The following code shows how to assign default colors to the points in a ggplot2 plot based on the factor variable Species:
library(ggplot2) ggplot(iris, aes(x=Sepal.Length, y=Sepal.Width, color=Species)) + geom_point()
Since we didn’t specify a color scale or a list of custom colors, ggplot2 simply assigned a list of default red, green, and blue colors to the points.
Example 2: Use Custom Colors
The following code shows how to assign custom colors to the points in a ggplot2 plot by using scale_color_manual():
library(ggplot2) ggplot(iris, aes(x=Sepal.Length, y=Sepal.Width, color=Species)) + geom_point() + scale_color_manual(values = c("setosa" = "purple", "versicolor="orange", "virginica"="steelblue"))
Note that we could have used hex color codes as well to specify the colors.
Example 3: Use a Custom Color Scale
The following code shows how to assign custom colors to the points in a ggplot2 plot by using a custom color scale from the RColorBrewer package:
library(ggplot2) library(RColorBrewer) #define custom color scale myColors pal(3, "Spectral") names(myColors) Species Names", values = myColors) ggplot(iris, aes(x=Sepal.Length, y=Sepal.Width, color=Species)) + geom_point() + custom_colors
Additional Resources
How to Create Side-by-Side Plots in ggplot2
How to Change the Legend Title in ggplot2
A Complete Guide to the Best ggplot2 Themes