35
You can display multiple lines in a single Matplotlib plot by using the following syntax:
import matplotlib.pyplot as plt plt.plot(df['column1']) plt.plot(df['column2']) plt.plot(df['column3']) ... plt.show()
This tutorial provides several examples of how to plot multiple lines in one chart using the following pandas DataFrame:
import numpy as np import pandas as pd #make this example reproducible np.random.seed(0) #create dataset period = np.arange(1, 101, 1) leads = np.random.uniform(1, 50, 100) prospects = np.random.uniform(40, 80, 100) sales = 60 + 2*period + np.random.normal(loc=0, scale=.5*period, size=100) df = pd.DataFrame({'period': period, 'leads': leads, 'prospects': prospects, 'sales': sales}) #view first 10 rows df.head(10) period leads prospects sales 0 1 27.891862 67.112661 62.563318 1 2 36.044279 50.800319 62.920068 2 3 30.535405 69.407761 64.278797 3 4 27.699276 78.487542 67.124360 4 5 21.759085 49.950126 68.754919 5 6 32.648812 63.046293 77.788596 6 7 22.441773 63.681677 77.322973 7 8 44.696877 62.890076 76.350205 8 9 48.219475 48.923265 72.485540 9 10 19.788634 78.109960 84.221815
Plot Multiple Lines in Matplotlib
The following code shows how to plot three individual lines in a single plot in matplotlib:
import matplotlib.pyplot as plt
#plot individual lines
plt.plot(df['leads'])
plt.plot(df['prospects'])
plt.plot(df['sales'])
#display plot
plt.show()
Customize Lines in Matplotlib
You can also customize the color, style, and width of each line:
#plot individual lines with custom colors, styles, and widths
plt.plot(df['leads'], color='green')
plt.plot(df['prospects'], color='steelblue', linewidth=4)
plt.plot(df['sales'], color='purple', linestyle='dashed')
#display plot
plt.show()
Add a Legend in Matplotlib
You can also add a legend so you can tell the lines apart:
#plot individual lines with custom colors, styles, and widths
plt.plot(df['leads'], label='Leads', color='green')
plt.plot(df['prospects'], label='Prospects', color='steelblue', linewidth=4)
plt.plot(df['sales'], label='Sales', color='purple', linestyle='dashed')
#add legend
plt.legend()
#display plot
plt.show()
Add Axis Labels and Titles in Matplotlib
Lastly, you can add axis labels and a title to make the plot complete:
#plot individual lines with custom colors, styles, and widths
plt.plot(df['leads'], label='Leads', color='green')
plt.plot(df['prospects'], label='Prospects', color='steelblue', linewidth=4)
plt.plot(df['sales'], label='Sales', color='purple', linestyle='dashed')
#add legend
plt.legend()
#add axis labels and a title
plt.ylabel('Sales', fontsize=14)
plt.xlabel('Period', fontsize=14)
plt.title('Company Metrics', fontsize=16)
#display plot
plt.show()
You can find more Matplotlib tutorials here.