Home » Pandas: How to Add Row to Empty DataFrame

Pandas: How to Add Row to Empty DataFrame

by Tutor Aspire

You can use the following basic syntax to add a row to an empty pandas DataFrame:

#define row to add
some_row = pd.DataFrame([{'column1':'value1', 'column2':'value2'}])

#add row to empty DataFrame
df = pd.concat([df, some_row])

The following examples show how to use this syntax in practice.

Example 1: Add One Row to Empty DataFrame

The following code shows how to add one row to an empty pandas DataFrame:

import pandas as pd

#create empty DataFrame
df = pd.DataFrame()

#define row to add
row_to_append = pd.DataFrame([{'team':'Mavericks', 'points':'31'}])

#add row to empty DataFrame
df = pd.concat([df, row_to_append])

#view updated DataFrame
print(df)

        team points
0  Mavericks     31

Notice that we created an empty DataFrame by using pd.DataFrame(), then added one row to the DataFrame by using the concat() function.

Example 2: Add Multiple Rows to Empty DataFrame

The following code shows how to add multiple rows to an empty pandas DataFrame:

import pandas as pd

#create empty DataFrame
df = pd.DataFrame()

#define rows to add
rows_to_append = pd.DataFrame([{'team':'Mavericks', 'points':'31'},
                               {'team':'Hawks', 'points':'20'},
                               {'team':'Hornets', 'points':'25'},
                               {'team':'Jazz', 'points':'43'}])

#add row to empty DataFrame
df = pd.concat([df, rows_to_append])

#view updated DataFrame
print(df)

        team points
0  Mavericks     31
1      Hawks     20
2    Hornets     25
3       Jazz     43

Once again we created an empty DataFrame by using pd.DataFrame(), then added multiple rows to the DataFrame by using the concat() function.

Note: You can find the complete documentation for the pandas concat() function here. 

Additional Resources

The following tutorials explain how to perform other common tasks in pandas:

How to Rename Columns in Pandas
How to Add a Column to a Pandas DataFrame
How to Change the Order of Columns in Pandas DataFrame

You may also like